Cnt Fet



LATEST MODELS

Typical SPICE model files for each future generation are available here.

. The Source and Drain (S/D) contacts are formed using metals instead of heavily doped Si. In a simple CNT-FET, no doping is needed to create a n-type or p-type FET. The type of CNT-FET depends on the band-gap of the CNT and the work function of the metal used as the S/D contact. 其中,碳纳米管(cnt)fet,具有复合半导体的栅极全能纳米线fet或finfet可能在未来的技术节点中被证明是有前景的解决方案。 此外,近些年,三星电子、台积电在半导体工艺上一路狂奔,互不相让,一直是行业关注的焦点。.

Attention: By using a PTM file, you agree to acknowledge both the URL of PTM: http://ptm.asu.edu/and the related publicationsin all documents and publications involving its usage.

New!

Fet

June 01, 2012:

PTM releases a new set of models for multi-gate transistors (PTM-MG), for both HP and LSTP applications. It is based on BSIM-CMG, a dedicated model for multi-gate devices.

Acknowledgement: PTM-MG is developed in collaboration with ARM.

Cnt

Please start from models and param.inc.

  • 7nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
  • 10nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
  • 14nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
  • 16nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
  • 20nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS

The entire package is also available here: PTM-MG

Cnt

November 15, 2008:

PTM releases a new set of models for low-power applications (PTM LP), incorporating high-k/metal gate and stress effect.

  • 16nm PTM LP model: V2.1
  • 22nm PTM LP model: V2.1
  • 32nm PTM LP model: V2.1
  • 45nm PTM LP model: V2.1

September 30, 2008:

PTM releases a new set of models for high-performance applications (PTM HP), incorporating high-k/metal gate and stress effect.

  • 16nm PTM HP model: V2.1
  • 22nm PTM HP model: V2.1
  • 32nm PTM HP model: V2.1
  • 45nm PTM HP model: V2.1

February 29, 2008:

Cnt Fet Biosensor

PTM releases the model for metallic carbon nanotube (CNT-interconnect).

  • Verilog-A based model card for CNT-interconnect is available at post-si

October 29, 2007:

PTM releases a new version for sub-45nm bulk CMOS, providing new modeling features of metal gate/high-k, gate leakage, temperature effect, and body bias.

  • 22nm PTM model for metal gate/high-k CMOS: V2.0
  • 32nm PTM model for metal gate/high-k CMOS: V2.0
  • 45nm PTM model for metal gate/high-k CMOS: V2.0

July 30, 2007

PTM extends the effort to post-Si devices. The first release is for carbon nanotube FET (CNT-FET).

  • Verilog-A based model card for CNT-FET is available at post-si

December 15, 2006

PTM for bulk CMOS is released, for 22nm node.

Cnt
  • 22nm BSIM4 model card for bulk CMOS: V1.0

February 22, 2006

A new generation of PTM for bulk CMOS is released, for 130nm to 32nm nodes. It captures the latest technology advances and achieves better scalability and continuity across technology nodes.

  • 32nm BSIM4 model card for bulk CMOS: V1.0
  • 45nm BSIM4 model card for bulk CMOS: V1.0
  • 65nm BSIM4 model card for bulk CMOS: V1.0
  • 90nm BSIM4 model card for bulk CMOS: V1.0
  • 130nm BSIM4 model card for bulk CMOS: V1.0

Cntfet Ppt

September 30, 2005

Cnt fet biosensor

Cnt Fet 원리

  • 32nm BSIM4 model card for bulk CMOS: V0.0
  • 32nm sub-circuit model for FinFET (double-gate): V0.0
  • 45nm sub-circuit model for FinFET (double-gate): V0.0 [for better convergence in the simulation, you can initialize the node voltage when using PTM for FinFET]

July 31, 2002

  • 45nm BSIM4 model card for bulk CMOS: V0.0
  • 65nm BSIM4 model card for bulk CMOS: V0.0

May 31, 2001

  • 90nm BSIM3 model card for bulk CMOS: V0.0
  • 130nm BSIM3 model card for bulk CMOS: V0.0
  • 180nm BSIM3 model card for bulk CMOS: V0.0

Cnt Fet Structure

References

Cnt Fete Nationale

  • S. Sinha, G. Yeric, V. Chandra, B. Cline, Y. Cao, 'Exploring sub-20nm FinFET design with predictive technology models,' to be published at DAC, 2012.
  • A. Balijepalli, S. Sinha, Y. Cao, 'Compact modeling of carbon nanotube transistor for early stage process-design exploration,' ISLPED, pp. 2-7, 2007.
  • W. Zhao, Y. Cao, 'New generation of Predictive Technology Model for sub-45nm early design exploration,' IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2816-2823, November 2006.
  • Y. Cao, T. Sato, D. Sylvester, M. Orshansky, C. Hu, 'New paradigm of predictive MOSFET and interconnect modeling for early circuit design,' pp. 201-204, CICC, 2000.